DDNet- A Deep Learning Approach to Detect Driver Distraction and Drowsiness

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid Bayesian Network approach to detect driver cognitive distraction

Article history: Received 22 May 2013 Received in revised form 23 October 2013 Accepted 23 October 2013

متن کامل

A Hybrid Approach to Detect Driver Drowsiness Utilizing Physiological Signals to Improve System Performance and Wearability

Driver drowsiness is a major cause of fatal accidents, injury, and property damage, and has become an area of substantial research attention in recent years. The present study proposes a method to detect drowsiness in drivers which integrates features of electrocardiography (ECG) and electroencephalography (EEG) to improve detection performance. The study measures differences between the alert ...

متن کامل

End-to-End Deep Learning for Driver Distraction Recognition

In this paper, an end-to-end deep learning solution for driver distraction recognition is presented. In the proposed framework, the features from pre-trained convolutional neural networks VGG-19 are extracted. Despite the variation in illumination conditions, camera position, driver’s ethnicity, and genders in our dataset, our best fine-tuned model, VGG-19 has achieved the highest test accuracy...

متن کامل

Vision-based method for detecting driver drowsiness and distraction in driver monitoring system

Jaihie Kim Yonsei University School of Electrical and Electronic Engineering 134 Sinchon-dong, Seodaemun-gu Seoul, Seoul 120-749, Republic of Korea E-mail: [email protected] Abstract. Most driver-monitoring systems have attempted to detect either driver drowsiness or distraction, although both factors should be considered for accident prevention. Therefore, we propose a new drivermonitoring me...

متن کامل

Machine Learning Systems for Detecting Driver Drowsiness

The advance of computing technology has provided the means for building intelligent vehicle systems. Drowsy driver detection system is one of the potential applications of intelligent vehicle systems. Previous approaches to drowsiness detection primarily make pre-assumptions about the relevant behavior, focusing on blink rate, eye closure, and yawning. Here we employ machine learning to data-mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Evergreen

سال: 2022

ISSN: ['2189-0420', '2432-5953']

DOI: https://doi.org/10.5109/4843120